Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 27

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Effect of gamma-ray irradiation on corrosion of stainless steel contacted with Zeolite particle

Kato, Chiaki; Yamagishi, Isao; Sato, Tomonori; Yamamoto, Masahiro*

Zairyo To Kankyo, 70(12), p.441 - 447, 2021/12

Zeolite particles have been used in a Cs adsorption vessel for purification of contaminated water in Fukushima Dai-ich Nuclear Power Station (1F). The used Cs adsorption vessels were kept in storage space on 1F site. The risk of localized corrosion of stainless steel used in the vessel was worried. To evaluate the risk of localized corrosion, using specially designed electrochemical testing apparatus was used under gamma-ray irradiation test. And, real size mock-up test conducted. The results showed the potential change caused by creation of H$$_{2}$$O$$_{2}$$ by water radiolysis decreased by zeolite particles and the enrichment of chloride ion concentration in the vessel do not propagate during dry up procedure of Cs adsorption vessel. These data indicate the risk of localized corrosion of Cs adsorption vessel may stay at considerably low level.

Journal Articles

Online measurement of the atmosphere around geopolymers under gamma irradiation

Cantarel, V.; Lambertin, D.*; Labed, V.*; Yamagishi, Isao

Journal of Nuclear Science and Technology, 58(1), p.62 - 71, 2021/01

 Times Cited Count:4 Percentile:44.4(Nuclear Science & Technology)

The gas production of wasteforms is a major safety concern for encapsulating active nuclear wastes. For geopolymers and cements, the H$$_{2}$$ produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the gas composition evolution around geopolymers was monitored on line under $$^{60}$$Co gamma irradiation. Transient evolution of the hydrogen production yield was measured for samples with different formulations. The rate of its evolution and the final values are consistent with the presence of a chemical reaction of the pseudo-first order consuming hydrogen in the samples. The results show this phenomenon can significantly reduce the hydrogen source term of geopolymer wasteform provided their diffusion constant remains low. Lower hydrogen production rates and faster kinetics were observed with geopolymers formulations in which pore water pH was higher. Besides hydrogen production, a steady oxygen consumption was observed for all geopolymers samples. The oxygen consumption rates are proportional to the diffusion constants estimated in the modelization of hydrogen recombination by a pseudo first order reaction.

JAEA Reports

Development of gel filler that facilitates fuel debris retrieval (Contract research); FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; Osaka University*

JAEA-Review 2019-029, 36 Pages, 2020/02

JAEA-Review-2019-029.pdf:2.33MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Development of Gel Filler that Facilitates Fuel Debris Retrieval". When gel materials such as polymer, silicate and clay minerals with adjusted viscosity are used in the process of debris retrieval, the gel would not leak down from the damaged parts, resulting in the reduction of surrounding air dose rate. In addition, gel materials can reduce the diffusion and scattering of dust that is produced by cutting. For these reasons, we propose a method where inside of a containment vessel is filled by gel materials in order to simplify the debris retrieval.

Journal Articles

On the hydrogen production of geopolymer wasteforms under irradiation

Cantarel, V.; Arisaka, Makoto; Yamagishi, Isao

Journal of the American Ceramic Society, 102(12), p.7553 - 7563, 2019/12

 Times Cited Count:8 Percentile:38.22(Materials Science, Ceramics)

The hydrogen gas (H$$_{2}$$) production of wasteforms is a major safety concern for encapsulating nuclear wastes. For geopolymers, the H$$_{2}$$ produced by radiolytic processes is a key factor because of the large amount of water present in their porous structure. Herein, the hydrogen production was measured under $$^{60}$$Co gamma irradiation. The effect of water saturation and sample size were studied for pure geopolymers, or using zeolites as an example waste. When geopolymer monolithic samples were large and saturated by water, the hydrogen released was measured up to two orders of magnitude lower with a 40 cm long cylinder samples (1.9$$times$$10$$^{-10}$$ mol/J) than a sample in powder form (2.2$$times$$10$$^{-8}$$ mol/J). To interpret results, a simple model was used, considering only hydrogen production, a potential recombination and its diffusion in the geopolymer matrix. Knowing the diffusion constant of the matrix, the model was able to reproduce the evolution of the hydrogen release as a function of the water saturation level and predict the evolution when sample size is increased up to 40 cm.

Journal Articles

Development of remote sensing technique using radiation resistant optical fibers under high-radiation environment

Ito, Chikara; Naito, Hiroyuki; Ishikawa, Takashi; Ito, Keisuke; Wakaida, Ikuo

JPS Conference Proceedings (Internet), 24, p.011038_1 - 011038_6, 2019/01

A high-radiation resistant optical fiber has been developed in order to investigate the interiors of the reactor pressure vessels and the primary containment vessels at the Fukushima Daiichi Nuclear Power Station. The tentative dose rate in the reactor pressure vessels is assumed to be up to 1 kGy/h. We developed a radiation resistant optical fiber consisting of a 1000 ppm hydroxyl doped pure silica core and 4 % fluorine doped pure silica cladding. We attempted to apply the optical fiber to remote imaging technique by means of fiberscope. The number of core image fibers was increased from 2000 to 22000 for practical use. The transmissive rate of infrared images was not affected after irradiation of 1 MGy. No change in the spatial resolution of the view scope by means of image fiber was noted between pre- and post-irradiation. We confirmed the applicability of the probing system, which consists of a view scope using radiation-resistant optical fibers.

Journal Articles

Rust and corrosion mechanism of carbon steel in dilute chloride solution at low dose rates

Motooka, Takafumi

QST-M-8; QST Takasaki Annual Report 2016, P. 73, 2018/03

Previous corrosion test of carbon steel in dilute artificial seawater under Co-60 $$gamma$$-ray irradiation has indicated that corrosion rate was enhanced at absorbed dose rates: $$>$$100 Gy/h and rust color was changed from black to dark brown. In the present study, the corrosion mechanism of carbon steel under Co-60 $$gamma$$-ray irradiation was investigated by identification of rust. $$gamma$$ rays enhanced oxidation of iron ions from di-valent to tri-valent. Rust formed under irradiation had higher oxidation state.

Journal Articles

Effect of chloride ion on corrosion behavior of SUS316L-grade stainless steel in nitric acid solutions containing seawater components under $$gamma$$-ray irradiation

Sano, Yuichi; Ambai, Hiromu; Takeuchi, Masayuki; Iijima, Shizuka; Uchida, Naoki

Journal of Nuclear Materials, 493, p.200 - 206, 2017/09

 Times Cited Count:7 Percentile:56.46(Materials Science, Multidisciplinary)

Concerning the Fukushima Daiichi Nuclear Power Plant accident, we investigated the effect of chloride ion on the corrosion behavior of SUS316L stainless steel, which is a typical material for the equipment used in reprocessing, in HNO$$_{3}$$ solution containing seawater components, including under the $$gamma$$-ray irradiation condition. Electrochemical and immersion tests were carried out using a mixture of HNO$$_{3}$$ and artificial seawater (ASW). In the HNO$$_{3}$$ solution containing high amounts of ASW, the cathodic current densities increased and uniform corrosion progressed. This might be caused by strong oxidants, such as Cl$$_{2}$$ and NOCl, generated in the reaction between HNO$$_{3}$$ and Cl$$^{-}$$ ions. The corrosion rate decreased with the immersion time at low concentrations of HNO$$_{3}$$, while it increased at high concentrations. Under the $$gamma$$-ray irradiation condition, the corrosion rate decreased due to the suppression of the cathodic reactions by the reaction between the above oxidants and HNO$$_{2}$$ generated by radiolysis.

JAEA Reports

Geopolymers and their potential applications in the nuclear waste management field; A Bibliographical study

Cantarel, V.; Motooka, Takafumi; Yamagishi, Isao

JAEA-Review 2017-014, 36 Pages, 2017/06

JAEA-Review-2017-014.pdf:3.37MB

After a necessary decay time, the zeolites used for the water decontamination will eventually be conditioned for their long-term storage. Geopolymer is considered as a potential matrix to manage radioactive cesium and strontium containing waste. For such applications, a correct comprehension of the binder structure, its macroscopic properties, its interactions with the waste and the physico-chemical phenomena occurring in the waste form is needed to be able to judge of the soundness and viability of the material. Although the geopolymer is a young binder, a lot of research has been carried out over the last fifty years and our understanding of this matrix and its potential applications is progressing fast. This review aims at gathering the actual knowledge on geopolymer studies about geopolymer composites, geopolymer as a confinement matrix for nuclear wastes and geopolymer under irradiation. This information will finally provide guidance for the future studies and experiments.

Journal Articles

Gas retention behavior of carbonate slurry under $$gamma$$-ray irradiation

Motooka, Takafumi; Nagaishi, Ryuji; Yamagishi, Isao

QST-M-2; QST Takasaki Annual Report 2015, P. 95, 2017/03

We conducted $$gamma$$ ray irradiation test using simulated carbonate slurry to investigate the cause of stagnant water over the high integrity container (HIC). This test was performed at Co-60 irradiation facility in Takasaki Advanced Radiation Research Institute. We observed a rise in water level, air bubbles in the slurry, a supernatant when the carbonate slurry with 95 g/L density was irradiated by $$gamma$$ ray at a dose rate of 8.5 kGy/h. The cause of the rise in water level was regarded as the volume expansion by the gas retention of the carbonate slurry. It was suggested that the cause of stagnant water over the high integrity container might be the volume expansion by the gas retention.

Journal Articles

Effects of gamma-ray irradiation on spontaneous potential of stainless steel in zeolite-containing diluted artificial seawater

Kato, Chiaki; Sato, Tomonori; Ueno, Fumiyoshi; Yamagishi, Isao

Proceedings of 17th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Vol.2, p.1357 - 1374, 2016/05

With respect to the long-term storage of the zeolite-containing spent Cs adsorption vessels used at the Fukushima Daiichi Nuclear Power Station, the corrosion of the vessel material is one of the most important issues. In this study, we performed electrochemical tests on stainless steel specimens in zeolite-containing artificial seawater under gamma-ray irradiation. The spontaneous potential ESP and critical pitting potential VC of the type 316L steel in systems in contact with various zeolites were measured in order to evaluate the corrosion resistance of the steel. In addition, the water sample was analyzed after being irradiated, in order to determine the concentrations of various dissolved oxidants such as oxygen and hydrogen peroxide, which can accelerate the corrosion process. The steady-state rest potential increased with an increase in the dose rate; however, the increase was suppressed in contact with the zeolites. The VC value of the steel when in contact with the zeolites was slightly smaller than the VC value in bulk water; however, the choice of the zeolite used as herschelite, IE96 and IE911 hardly affect the VC value. The concentration of H$$_{2}$$O$$_{2}$$ in the bulk water under irradiation also increased with the increase in the dose rate. This increase was suppressed in the systems in contact with the zeolites, owing to the decomposition of the H$$_{2}$$O$$_{2}$$ by the zeolites. A clear relationship was observed between ESP and the H$$_{2}$$O$$_{2}$$ concentration. As contact with the zeolites caused the increase in ESP under irradiation to be suppressed, it can be concluded that the presence of zeolites in the spent Cs adsorption vessels can reduce the probability of the localized corrosion of the stainless steel in the vessels.

Journal Articles

Corrosion of the stainless steel in the zeolite containing diluted artificial seawater under $$gamma$$-ray irradiation

Kato, Chiaki; Sato, Tomonori; Nakano, Junichi; Ueno, Fumiyoshi; Yamagishi, Isao

Proceedings of 2014 Nuclear Plant Chemistry Conference (NPC 2014) (USB Flash Drive), 9 Pages, 2014/10

As a part of consideration for long-term storage of spent zeolite adsorption vessels in the Fukushima Daiichi Nuclear Power Station, corrosion of vessel material in the spent zeolite adsorption vessel is one of important issue. We performed electrochemical tests of stainless steel (type 316L) in the zeolite containing artificial seawater under $$gamma$$-ray irradiation. Steady spontaneous potential (Esp) and pitting potential (VC), of type 316L was measurement. $$^{60}$$Co $$gamma$$-rays source was used under irradiation. Dose rate of $$gamma$$-ray irradiation was controlled for 5 kGy/h and 400 Gy/h. In anode polarization curves, there was no clear difference under irradiation and non-irradiation. The corrosion potential of type 316L increased with increasing time after $$gamma$$-ray irradiation. The Esp was shifted to nobler by $$gamma$$-rays irradiation, while increasing Esp was suppressed by contacted with zeolite.

Journal Articles

Behavior of uranium-zirconium hydride fuel under reactivity initiated accident conditions

Sasajima, Hideo; Sugiyama, Tomoyuki; Nakamura, Takehiko; Fuketa, Toyoshi; Uetsuka, Hiroshi

Proceedings of 7th International Topical Meeting on Research Reactor Fuel Management (ENS RRFM2003), p.109 - 113, 2003/03

Uranium-zirconium hydride (U-ZrHx) fuel has been widely utilized in the world as TRIGA reactor fuel. In order to obtain the fuel performance data under accident conditions and to enhance accountability of the safety assessment of the reactors using the fuel, irradiation tests under power burst type accident conditions have been conducted in the NSRR. Five pulse irradiation tests have been performed at peak fuel enthalpies ranging from 187 J/g to 483 J/g. Cladding surface temperature increased rapidly at the pulse and DNB occurred in peak fuel enthalpy over 187 J/g in the tests. The DNB occurred at lower fuel enthalpy in the U-ZrH1.6 fuel than in the UO$$_{2}$$ fuel rods. The rod internal pressure rose up to as high as 1MPa in the transient heating tests, suggesting considerable release of the hydrogen decomposed from the fuel. The peak pressure was lower than equilibrium hydrogen pressure of 1.5MPa at the peak temperature, suggesting the transient effect. Considerable PCMI was observed in the tests, through cladding elongation up to 3.3 mm synchronized to the pellet stack deformation.

Journal Articles

Development of radiation-proof robot

Oka, Kiyoshi; Shibanuma, Kiyoshi

Advanced Robotics, 16(6), p.493 - 496, 2002/12

 Times Cited Count:8 Percentile:39.11(Robotics)

no abstracts in English

Journal Articles

Rock-like oxide fuels and their burning in LWRs

Yamashita, Toshiyuki; Kuramoto, Kenichi; Akie, Hiroshi; Nakano, Yoshihiro; Shirasu, Noriko; Nakamura, Takehiko; Kusagaya, Kazuyuki*; Omichi, Toshihiko*

Journal of Nuclear Science and Technology, 39(8), p.865 - 871, 2002/08

 Times Cited Count:25 Percentile:81.45(Nuclear Science & Technology)

Research on the plutonium rock-like oxide (ROX) fuels and their once-through burning in light water reactors has been performed to establish an option for utilizing and disposing effectively the excess plutonium. The ROX fuel is a sort of the inert matrix fuels and consists of mineral-like compounds such as yttria stabilized zirconia, spinel and corundum. A particle-dispersed fuel was devised to reduce damage by heavy fission fragments. Some preliminary results on swelling, fractional gas release and microstructure change for five ROX fuels were obtained from the irradiation test and successive post-irradiation examinations. Inherent disadvantages of the Pu-ROX fuel cores could be improved by adding 238U or 232Th as resonant materials, and all improved cores showed a nearly the same characteristics as the conventional UO2 core during transient conditions. The threshold enthalpy of the ROX fuel rod failure was found to be comparable to the fresh UO2 rod by pulse-irradiation tests simulating reactivity initiated accident conditions.

Journal Articles

Behavior of high-burnup PWR fuels with low-tin zircaloy-4 cladding under reactivity-initiated-accident conditions

Fuketa, Toyoshi; Sasajima, Hideo; Sugiyama, Tomoyuki

Nuclear Technology, 133(1), p.50 - 62, 2001/01

 Times Cited Count:67 Percentile:96.89(Nuclear Science & Technology)

no abstracts in English

Journal Articles

The Status of the RIA test program in the NSRR

Fuketa, Toyoshi; Nakamura, Takehiko; Ishijima, Kiyomi

NUREG/CP-0162, 2, p.179 - 198, 1998/00

no abstracts in English

Journal Articles

NSRR pulse irradiation experiments and tube burst tests

Fuketa, Toyoshi; Nagase, Fumihisa; Nakamura, Takehiko; Uetsuka, Hiroshi; Ishijima, Kiyomi

NUREG/CP-0166, 3, p.223 - 241, 1998/00

no abstracts in English

Journal Articles

Fission gas induced cladding deformation of LWR fuel rods under reactivity initiated accident conditions

Nakamura, Takehiko; Sasajima, Hideo; Fuketa, Toyoshi; Ishijima, Kiyomi

Journal of Nuclear Science and Technology, 33(12), p.924 - 935, 1996/12

 Times Cited Count:11 Percentile:68.15(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Experimental study on the fuel behavior during reactivity accident at power operation condition

Katanishi, Shoji; Ishijima, Kiyomi

Journal of Nuclear Science and Technology, 32(11), p.1098 - 1107, 1995/11

 Times Cited Count:2 Percentile:28.04(Nuclear Science & Technology)

no abstracts in English

Journal Articles

Development of research reactor fuel

Yanagisawa, Kazuaki; Ugajin, Mitsuhiro; *

Kaku Nenryo Kogaku; Genjo To Tembo, p.285 - 304, 1993/11

no abstracts in English

27 (Records 1-20 displayed on this page)